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Abstract: The São Francisco River Basin (SFRB) plays a key role for the agricultural and hydropower
sectors in Northeast Brazil (NEB). Historically, in the low part of the SFRB, people have to cope with
strong periods of drought. However, there are incipient signs of increasing drought conditions in the
upper and middle parts of the SFRB, where its main reservoirs (i.e., Três Marias, Sobradinho, and Luiz
Gonzaga) and croplands are located. Therefore, the assessment of the impacts of extreme drought
events in the SFRB is of vital importance to develop appropriate drought mitigation strategies. These
events are characterized by widespread and persistent dry conditions with long-term impacts on
water resources and rain-fed agriculture. The purpose of this study is to provide a comprehensive
evaluation of extreme drought events in terms of occurrence, persistence, spatial extent, severity, and
impacts on streamflow and soil moisture over different time windows between 1980 and 2020. The
Standardized Precipitation-Evapotranspiration Index (SPEI) and Standardized Streamflow Index
(SSI) at 3- and 12-month time scales derived from ground data were used as benchmark drought
indices. The self-calibrating Palmer Drought Severity Index (scPDSI) and the Soil Moisture and Ocean
Salinity-based Soil Water Deficit Index (SWDIS) were used to assess the agricultural drought. The
Water Storage Deficit Index (WSDI) and the Groundwater Drought Index (GGDI) both derived from
the Gravity Recovery and Climate Experiment (GRACE) were used to assess the hydrological drought.
The SWDISa and WSDI showed the best performance in assessing agricultural and hydrological
droughts across the whole SFRB. A drying trend at an annual time scale in the middle and south
regions of the SFRB was evidenced. An expansion of the area under drought conditions was
observed only during the southern hemisphere winter months (i.e., JJA). A marked depletion of
groundwater levels concurrent with an increase in soil moisture content was observed during
the most severe drought conditions, indicating an intensification of groundwater abstraction for
irrigation. These results could be useful to guide social, economic, and water resource policy
decision-making processes.

Keywords: São Francisco River; drought; GRACE; SMOS; scPDSI

1. Introduction

Drought is one of the most important extreme events that threatens food and water
security in many parts of the world [1], especially in developing countries and particularly
in Brazil [2,3]. With the advent of climate change, the severity, duration, and spatial extent
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of droughts are projected to increase in some Brazilian regions, such as the São Francisco
River Basin (SFRB) [4,5]. The SFRB plays an important role in supplying water for human
consumption, agricultural irrigation, and hydropower production in Northeast Brazil
(NEB) [6], which is a vast region marked by socioeconomic disparities and high societal
vulnerability to drought [7,8].

Over the past years, the SFRB has been experiencing more frequent and extreme
drought events [9–11]. Numerous studies conducted in this basin show that the occurrence
of extreme and severe meteorological drought events is linked to distinct climate systems
modulated by El Niño–Southern Oscillation (ENSO) conditions [11], sea surface tempera-
ture (SST) anomalies in the tropical Atlantic [12], Pacific Decadal Oscillation (PDO) [13], or
to an interaction of these indices at different time scales [10,13,14]. This situation carries
serious implications for the agriculture and hydroelectric sectors, such as those observed
between 2012 and 2015 [13]. Furthermore, it threatens the sustainability and economic
viability of the water transfer project from the São Francisco River to the semiarid NEB [15].
This water infrastructure project aims to improve water security for more than 12 million
people in the semiarid region of the NEB [16]. In this context, there is a need for a com-
prehensive exploration of this natural hazard and a deeper understanding on their spatial
distribution to support the development of strategies of planning and managing water
resources during drought and water scarcity conditions.

Drought is classified into four major types: meteorological, hydrological, agricultural,
and socioeconomic drought [17]. A prolonged deficit of precipitation corresponds to
meteorological drought [18]. When the deficit is persistent in time and begins to negatively
impact crops it is referred to as an agricultural drought [19]. Hydrological drought often
occurs after the onset of meteorological drought, and is characterized by abnormally low
streamflow in rivers and abnormally low levels in lakes, reservoirs, and groundwater [20].
Socioeconomic drought refers to conditions in which the water supply cannot satisfy the
demand related to human activities [21].

The simplest way for monitoring drought conditions is to use standardized drought
indices which are derived from observed measurements such as precipitation, soil moisture,
streamflow, and groundwater levels [17]. They aim to categorize and quantify droughts in
terms of the severity, duration, and spatial extent [22]. Despite the wide variety of available
drought indices [22,23], they have limitations when applied to large regions with scarce
ground-based data because the local features of the drought cannot be generalized [22].
However, in recent years, the increased availability of satellite missions dedicated to
earth observation have allowed the calculation of various drought indices using remote
sensing data, modeled data, and merged data to overcome this problem in data scarce
regions [24–28].

Although the SFRB is a region where observed measurements are scarce, very few
studies have used satellite-based drought indices to assess the impacts of drought in this
basin. For example, Santos et al. [29] used the SPI at different time scales derived from
Tropical Rainfall Measuring Mission (TRMM) to investigate the spatiotemporal behavior of
meteorological droughts in the SFRB. They found that the southwest and south/southeast
parts of the basin have been the most affected by droughts in term of drought event severity
between January 1998 and December 2013. Su et al. [11] assessed the spatiotemporal extent
of the 2012–2015 drought event in the SFRB by using GRACE-derived TWS fields. They
pointed out that the SFRB experienced a water linear depletion rate of 27.63 km3/year
during 02/2012–01/2015. Nevertheless, as far as we know, there is no recent study that
assesses the interaction between the different types of droughts in the SFRB. In light of this,
meaningful value will be added to the literature on the large-scale impact of drought in the
SFRB through state-of-the-art satellite-based drought indices.

Some drought indices commonly used for drought assessment include the Stan-
dardized Precipitation Evapotranspiration Index (SPEI) [30], Soil Water Deficit Index
(SWDI) [31], self-calibrating Palmer Drought Severity Index (scPDSI) [32], Standardized
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Streamflow Index (SSI) [33], Water Storage Deficit Index (WSDI) [34], and Groundwater
Drought Index (GGDI) [35], among others.

The SPEI has been widely used to monitor meteorological drought impacts in different
parts of the world due to its multi-scalar nature and its sensitivity to long-term temperature
variability [30]. It is similar to the Standardized Precipitation Index (SPI) in the way
in which it is calculated, but the SPEI is based on a simplified climatic water balance
(precipitation (P) minus potential evapotranspiration (PET)) computed at different time
scales [36] and normalized with a log-logistic probability distribution function to remove
the seasonal effect [37]. Therefore, the SPEI is better suited than the SPI for evaluating the
impacts of drought under global climate change [36].

The scPDSI has been used for identifying and monitoring agricultural droughts [22].
It is based on a simple two-layer bucket soil moisture balance in the rooting zone where the
soil water capacity, precipitation, and PET are used as inputs. The calculation of the scPDSI
includes a self-calibrating procedure by replacing its empirical constants with dynamically
calculated values based on the characteristics of the local climate [32]. The SWDI is a
relatively new agricultural drought index, which is based on the ratio of the difference
between soil moisture and field capacity and the difference between field capacity and
wilting point [38]. Because the SWDI is independent of record length, it has been applied for
operational monitoring of agricultural drought integrating surface soil moisture estimates
from the Soil Moisture and Ocean Salinity (SMOS) mission [7,39].

The SSI is a hydrological drought index based on the same theoretical basis as the
SPI [22]. It is used to characterize anomalies in observed streamflow data at different
time scales [40,41]. Moreover, the WSDI and GGDI are hydrological drought indices [42].
Unlike the SSI, the WDSI and GGDI are derived from the Gravity Recovery and Climate
Experiment (GRACE) satellite missions and are applicable to study large-scale terrestrial
water storage (TWS) changes [34,35]. Each of the abovementioned drought indices has
strengths, weaknesses, and limitations. Hence, in order to have a complete picture of
drought features in a region, the integration of several drought indices is needed [22].

This work aims to analyze the concomitant impacts between the different types of
droughts in order to understand their short-term and long-term characteristics in the entire
SFRB. The major novelty of this study with respect to similar previous studies is the use
of the latest version of the GRACE, SMOS-based soil moisture, and satellite-based scPDSI
datasets together with high-quality ground-based data to delineate those areas of the SFRB
where drought events are becoming more frequent and persistent.

2. Materials and Methods
2.1. Study Area

The study was carried out over the SFRB, which is located between 7.2–21.1◦ S and
36.3–47.6◦ W (Figure 1a), with a drainage area of 621,812 km2 at the basin outlet and an
annual mean discharge of 1961 m3/s at Propriá on its mainstream [43]. The SFRB has
approximately 14 million inhabitants (71.7 4 inhabitants per square kilometer) distributed
among seven states: Bahia, Minas Gerais, Pernambuco, Alagoas, Sergipe, Goiás, and
part of the Federal District [44]. Its mainstream is 2696 km long [10], starting in the
Serra da Canastra (Minas Gerais) and reaching the Atlantic Ocean between the border
of Alagoas and Sergipe. The main reservoirs are Três Marias, Sobradinho, and Itaparica
(Luíz Gonzaga), whose useful reservoir volumes are 15,278 hm3, 28,669 hm3, and 3549 hm3,
respectively [45]. Roughly 68% of the SFRB climate is Aw (tropical with wet summers and
dry winters) according to the Köppen–Geiger type-climate classification [46]. The mean
annual temperature in the SFRB is approximately 24 ◦C, ranging from 18 ◦C in the more
elevated areas of the Serra da Canastra to 27 ◦C in the northern lowlands [47]. The mean
annual precipitation across the SFRB is around 910 mm, ranging from around 400 mm to
>1500 mm [10] (Figure 1b). The temporal variability of precipitation is largely modulated
by SST anomalies over the tropical Atlantic region and the ENSO phenomenon [12,48].
Over the middle SFRB, the rainy season occurs during November to January, and from



Remote Sens. 2021, 13, 3921 4 of 25

January to March in the northern basin [10]. The elevation of the SFRB gradually rises
from the northern lowlands (near the mouth of the São Francisco River) to the Serra da
Canastra (above 1800 m above sea level (a.s.l.)). The cropland is the most prominent land
cover in the SFRB and covers about 44% of its entire surface [49], with 6,902,960 ha devoted
to irrigated annual crops such as soybean, wheat, and maize in 2017 [50].
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Figure 1. The study area: (a) the hydrographic network together with terrain elevation based on 90 m Digital Elevation
Model—Shuttle Radar Topographic Mission (DEM-SRTM) images [51]. The spatial distribution of reservoirs Itaparica (1),
Sobradinho (2), and Três Marias (3) is shown; (b) mean annual rainfall derived from ground-based gridded precipitation
dataset developed by Xavier et al. [51] for the reference period 1980–2015. The spatial location of the streamflow gauges
Propriá (49705000), Várzea da Palma (41990000), Boqueirão (46902000), and Santo Inácio (43880000) operated by the Brazilian
National Water Agency (ANA) is shown.

2.2. Datasets
2.2.1. Ground-Based Data
Precipitation and Potential Evapotranspiration Data

P and PET were derived from a gridded product (version 2.0) developed by Xavier et al. [52]
using ground-based climate data provided by the Brazilian Water Agency (ANA), the
National Institute of Meteorology (INMET), and the Water and Electric Energy Department
of São Paulo state (DAEE). The PET is based on the Food and Agriculture Organization
of the United Nations-56 (FAO-56) Penman–Monteith formulation [53]. The procedure
to generate this product involved a quality control and homogeneity check. Further
information on the generation and validation of this dataset can be found at Xavier et al. [54]

Streamflow Data

Daily streamflow time series were obtained from the Brazilian National Water Agency
(ANA). Propriá, Várzea da Palma, Boqueirão, and Santo Inácio were selected as reliable
benchmark streamflow gauges (see Figure 1b) because they exhibit less than 3% missing
data per month. To verify whether the daily streamflow time series are stationary, the
Augmented Dickey–Fuller (ADF) test was computed omitting the missing observations as
shown in Ryan and Giles [55]. All time series were stationary at the 5% significance level
(Supplementary Material Table S1). Hence, missing data were filled using autoregressive
integrated moving average (ARIMA) models with the lowest Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) values through the R package imputeTS
(version 3.2; Moritz and Bartz-Beielstein [56]).
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2.2.2. Satellite-Based Data
SMOS Surface Soil Moisture Data

SMOS is an L-band passive microwave satellite dedicated to global surface soil mois-
ture (SSM, top 0–5 cm) monitoring [57]. For this study, the SSM estimates were extracted
from the SMOS L3 SSM product (version 3.0) provided by the Barcelona Expert Center.
This product was averaged considering its ascending and descending orbits to minimize
the influence of the radio frequency interference (RFI) on retrieved SSM values [58]. The
choice of this product was based on its acceptable performance in the identification of
agricultural drought when compared to in situ measurements in the SFRB [7,59].

GRACE/GRACE-FO Data

The GRACE twin-satellite mission and its follow-on (GRACE-Follow-On) is a joint
mission of the National Aeronautics and Space Administration (NASA) and the German
Aerospace Center (DLR) that measures the surface mass changes which, in turn, are related
to the terrestrial water storage anomalies (TWSA) [60]. The TWSA integrates snowpack
water equivalent, canopy water storage, surface water storage, soil moisture storage, and
groundwater storage relative to a time baseline [61]. The GRACE/GRACE-FO-derived
TWSA products developed by the Center for Space Research at the University of Texas
(CSR v2.0; [62]), the German Research Center for Geoscience (GFZ v3; [63]), and the Jet
Propulsion Laboratory (JPL v2; [64]) were used. To minimize the noise and systematic errors
from different products [65], they were resampled using the nearest neighbor technique
to 1◦ × 1◦ and then averaged in each grid point [11]. The stationarity of the averaged
TWSA time series was verified with the ADF test [55] on a per-pixel basis. Since the
TWSA time series were stationary (Supplementary Material Figure S1), the data gaps
in all GRACE/GRACE-FO products (i.e., caused by satellite batteries and accelerometer
failure; [42]) were filled using ARIMA models. The AIC and BIC values were used as
goodness-of-fit measures. The TWSA data are relative to the baseline mean over January
2004 to December 2009 (except the GFZ product, which is referred to during the period
April 2002 to March 2020) [63]. Therefore, for comparisons against other datasets used in
this study, a new baseline was computed by averaging each grid point from April 2002 to
March 2020 and subtracting that value from all time steps [42]. The reason for choosing
these products is that they have shown an acceptable performance in quantifying the impact
of drought events over the SFRB through different TWSA-based drought indexes [11,66].

2.3. Drought Indices
2.3.1. Ground-Based Drought Indices
Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI was used to assess meteorological drought conditions and their variability
in time. For the calculation of the SPEI, P and PET were derived from the gridded product
developed by Xavier et al. [52]. In this study, the aggregation of P minus PET for a set of n
months, followed by standardization to zero mean and unit standard deviation, is called
SPEIn. Regardless of the time scale, the physical meaning of positive SPEI values is the
occurrence of wetter than average conditions (i.e., water surplus), while negative values
denote drier than average conditions (i.e., water deficit). This dataset provides reliable
information for drought assessment in Brazil, as confirmed in previous studies [67–69].
The spatial and temporal consistency of the SPEI was checked and their area-averaged time
series were visually inspected to detect any problems before use. In this study, the SPEI
was adopted as a benchmark drought index because of its traceable feature. The SPEI at 3-
and 12-month time scales was calculated using the R package SPEI (version 1.7; Vicente-
Serrano et al. [30]). The reference period for computing SPEI was 01/1980 to 12/2015. The
rationale behind the choice of the SPEI is related to the fact that it is appropriate to assess
meteorological droughts in the context of global warming due to its high sensibility to
temperature changes [70]. The 3- and 12-month time scales were selected to focus attention
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on both short-term (i.e., SPEI3) and long-term (i.e., SPEI12) drought events. For more
details about the mathematical basis of the SPEI, see Vicente-Serrano et al. [30].

Standardized Streamflow Index (SSI)

Understanding the role of the propagation of meteorological droughts into hydrolog-
ical droughts on recent droughts over the SFRB is a relevant topic. The SSI was used to
identify the occurrence and the intensity of hydrological droughts and its propagation on
some reaches of the São Francisco River. For its calculation at 3- and 12-month time scales
(i.e., SSI3 and SSI12), daily streamflow time series obtained from the ANA were used. The
motivation behind the use of SSI came out of its good performance in the characterization
of hydrological drought events over the NEB [71]. More details about the theoretical
background of SSI can be found in Tijdeman et al. [72].

2.3.2. Satellite-Based Drought Indices
SMOS-Based Soil Water Deficit Index (SWDIS)

In this study, the SWDIS was used to assess the impact of drought conditions on SSM.
The SWDIS was proposed by Martínez-Fernández et al. [31] as follows:

SWDIS = 10
(
θ− θFC

θAWC

)
(1)

where θ is the soil water content derived from SMOS-based SSM time series (m3/m3) FC
denotes field capacity (m3/m3), and AWC available water content (m3/m3), which is the
difference between FC and WP (wilting point). The 5th and 95th percentiles derived from
SMOS-based SSM time series were used as estimators of WP and FC, respectively [73]. For
calculation of the monthly SWDIS at each SMOS pixel, the SSM estimates were extracted
from the SMOS L3 SSM product. To remove the seasonal signal, the SWDIS time series
were standardized by removing the climatology mean and dividing by standard deviation
(SWDISa). Thus, positive SWDISa values indicate greater-than-mean SWDIS (excess mois-
ture), while negative values indicate less-than-mean SWDIS (deficit moisture). Further
details of the SWDIS can be found in Martínez-Fernández et al. [31].

Self-Calibrating Palmer Drought Severity Index (scPDSI)

In order to assess the impact of drought conditions on the plant root zone soil moisture
(i.e., 0–100 cm), a global scPDSI dataset was used [32]. It was obtained from the Climatic
Research Unit (CRU) of University of East Anglia, who used the fields of monthly precipita-
tion (P) and temperature (T) registers available in the CRU high-resolution surface climate
data set (CRU TS) as inputs in its calculation [74]. For this study, a subset of this dataset
spanning 1981 to 2020 with monthly resolution was used. The rationale behind the choice
of this dataset is related to the fact that the scPDSI has a high sensitivity to agricultural
drought in the NEB [71], has moderate spatial resolution, and that it was recently updated
by the CRU (version 4.05). More details and information on the scPDSI can be found at van
der Schrier et al. [74].

Water Storage Deficit Index (WSDI)

Once the TWSA monthly time series over the SRFB was obtained, the WSDI was
computed in each grid point as proposed by Thomas et al. [34]:

WSDi,j = TWSAi,j − TWSAi (2)

WSDI =
WSD − µ

σ
(3)

where WSD is the Water Storage Deficit [dimensionless] for the month i (from 1 to 12) and
the year j (from 2002 to 2020); TWSAi,j represents the value of TWSA [cm] for the i month
and the j year; and TWSAi the long-term mean for all values of TWSA [cm] at the i month.
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The obtained time series of WSD in each grid point was normalized by its long-term mean
(µ) and standard deviation (σ), resulting in the WSDI (Equation (3)). Further details about
the WSDI are presented by Nigatu et al. [42].

GRACE-Based Groundwater Drought Index (GGDI)

Since drought can affect groundwater storage in the SFRB [75], the GGDI developed
by Wang et al. [76] was implemented to investigate the spatiotemporal characteristics
of groundwater drought. Firstly, the groundwater storage anomalies changes (GWSA∆)
were computed by subtracting the incremental change of the snowpack water equivalent
anomalies (SWEA∆), canopy water storage anomalies (CWSA∆), surface water storage
anomalies (SWSA∆), and soil moisture storage anomalies (SMSA∆) from the changes of
GRACE-based TWSA (TWSA∆) according to the Equations (4)–(8).

GWSA∆ = TWSA∆ − (SWEA∆ − CWSA∆ − SWSA∆ − SMSA∆) (4)

TWSA∆ = TWSAi − TWSAi−1 (5)

SWEA∆ = SWEAi − SWEAi−1 (6)

CWSA∆ = CWSAi − CWSAi−1 (7)

SWSA∆ = SWSAi − SWSAi−1 (8)

where TWSAi (SWEAi, CWSAi, and SWSAi) is the TWSA (SWEA, CWSA, and SWSA) [cm]
for the i month; and TWSAi−1 signifies the value of TWSA (SWEA, CWSA, and SWSA)
[cm] for the i − 1 month between April 2002 and March 2020.

The SWE, CWS, and SMS were extracted from the Global Land Data Assimilation
System (GLDAS) Noah Land Surface Model L4 monthly v2.1 dataset [77]. The SWS
was calculated using TerraClimate data [78]. For consistency, the SWE, CWS, SMS, and
SWS were resampled through the nearest neighbor technique to match the 1◦ × 1◦ grid
of GRACE-based TWSA. Then, these variables were converted to monthly anomalies
(i.e., SWEA, CWSA, SMSA, and SWSA) considering the baseline period April 2002 to
March 2020 (i.e., as with the GRACE-based TWSA). Secondly, the time series of GWSA∆
was normalized subtracting the climatology mean for the i month (from 1 to 12) and all
j years (from 2002 to 2020), and then dividing by their standard deviation (sd) to remove
seasonality in the time series of GWSA∆ as suggested by Nigatu et al. [42], resulting in the
GGDI (equation 9). Similar to the WSDI, this processing was applied to each TWSA grid
point. Table 1 summarizes the datasets employed in this study.

GGDI =
GWSA∆i,j − GWSA∆i

sd(GWSA∆i)
(9)

2.4. Methodology

The study involved three steps in sequence. In the first step, the seasonal and annual
SPEI trends at 3- and 12-month time scales were studied to determine whether there
have been any significant changes in meteorological drought trends from 1980 to 2015.
To do so, the modified Mann–Kendall trend test was applied to the area-averaged time
series of SPEI3 and SPEI12 via the mean. This is a non-parametric test widely used to
verify the presence of long-term trends in time series regardless of the existence of serial
correlation [79,80]. The threshold levels of statistical significance to identify a monotonic
trend were 5% (p value ≤ 0.05, high statistical significance) and 10% (0.05 < p value ≤ 0.10,
moderate statistical significance), with the null hypothesis of no trend. The Theil–Sen
method was used to compute the slope of said trends [81]. Furthermore, to calculate the
spatial characteristics of this type of drought the following criteria were applied at each
grid point. A dry spell starts when SPEI ≤ −1.00 for at least two consecutive months, and it
ends when SPEI > −1.00. These thresholds were adopted to focus attention on the drought
categories referred to as moderate dry, severe dry, and extremely dry (Table 2), which can
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trigger severe impacts on agriculture and hydroelectric sectors in the SFRB. The duration
of a dry spell is the number of months between its onset and end. The intensity is the
minimum SPEI value during the occurrence of a dry spell. The severity of a drought event
is the absolute value of the sum of the values of SPEI from the beginning to end of said
drought event. For a given month, the drought spatial coverage is the percentage of pixels
with values of SPEI ≤ −1.00. For this study, seven meteorological drought categories were
considered according to the criteria proposed by McKee et al. [82], as shown in Table 2.

Table 1. Summary of the drought indices used in this study.

Drought
Index Product/Data Name Time Period Temporal

Resolution
Spatial

Resolution Data Source Accessed on

SPEI
P 01/1980 to 12/2015 Monthly 0.25◦ https://bit.ly/

2QyPvbm 15 Jan 2021

PET 01/1980 to 12/2015 Monthly 0.25◦ https://bit.ly/
2QyPvbm 15 Jan 2021

SWDIS
SMOS L3 SSM (asc) 06/2010 to 03/2020 Monthly 0.225◦ http://bec.icm.

csic.es 10 Feb 2021

SMOS L3 SSM (des) 06/2010 to 03/2020 Monthly 0.225◦ http://bec.icm.
csic.es 10 Feb 2021

scPDSI
CRU TS-based P 01/1981 to 12/2020 Monthly 0.5◦ https://bit.ly/

3v8sUl1 10 Jun 2021

CRU TS-based T 01/1981 to 12/2020 Monthly 0.5◦ https://bit.ly/
3v8sUl1 10 Jun 2021

SSI Streamflow 01/1980 to 03/2020 Daily — https://bit.ly/
3vb2LSn 10 Jun 2021

WSDI and
GGDI

GRACE-based CSR v2.0 04/2002 to 03/2020 Monthly 0.25◦ https://bit.ly/
3bOqNeg 04 Aug 2021

GRACE-based GFZ v3 04/2002 to 03/2020 Monthly 1◦ https://bit.ly/
2Sm2ldE 04 Aug 2021

GRACE-based JPL v2 04/2002 to 03/2020 Monthly 0.5◦ https://grace.
jpl.nasa.gov 04 Aug 2021

GGDI
GLDAS Noah Model 04/2002 to 03/2020 Monthly 0.25◦ https://disc.

gsfc.nasa.gov 04 Aug 2021

TerraClimate 04/2002 to 03/2020 Monthly 1/24◦ https://bit.ly/
3c550iL 04 Aug 2021

Table 2. Drought categories for the values of SPEI, SSI, SWDISa, scPDSI, WSDI, and GGDI.

Drought
Category SPEI/SSI Probability [%] 1 SWDISa scPDSI WSDI GGDI

Extreme wet >2.00 84.14 >0.44 >4.00 >0.96 >0.62
Severe wet 1.50 to 1.99 81.86 0.34 to 0.44 4.00 to 3.00 0.84 to 0.96 0.52 to 0.62

Moderate wet 1.00 to 1.49 77.45 0.23 to 0.33 2.99 to 2.00 0.64 to 0.83 0.33 to 0.51
Near normal 0.99 to −0.99 68.27 0.24 to −0.82 1.99 to −1.99 0.63 to −1.30 0.32 to −1.08
Moderate dry −1.00 to −1.49 9.18 −0.83 to −1.15 −2.00 to −2.99 −1.31 to −1.49 −1.09 to −1.34

Severe dry −1.50 to −1.99 4.41 −1.16 to −1.27 −3.00 to −3.99 −1.50 to −1.67 −1.35 to −1.49
Extreme dry <−2.00 2.28 <−1.28 <−4.00 <−1.68 <−1.50

1 The cumulative probability of non-exceedance for each SPEI/SSI drought category according to Junqueira et al. [83].

A comprehensive analysis of the extreme drought events in the SFRB was also carried
out. The approach adopted considers that they occur when the drought spatial coverage is
greater than 40% for at least five consecutive months. During these episodes, the temporal
persistence was assessed. In this study, this refers to the time period (as a percentage of the
duration of the extreme drought event) in which a pixel shows values of SPEI ≤ −1.00 [84].
Under this condition, significant impacts on the surface soil moisture and the root zone,
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streamflow, and reservoir and groundwater levels would be expected. Based on this
premise, in a second step, the linear association between the area-averaged values of SPEI3
and SPEI12 against SWDISa, scPDSI, SSI3, SSI12, WSDI, and GGDI during their coincident
time periods was analyzed. To that end, the Spearman rank correlation coefficient was
considered. In order to make the Spearman correlation analysis more reliable, all time
series were previously detrended using linear regression for removing trend and seasonal
components [85]. The use of this statistical measure was motivated by the fact that it does
not require normally distributed data and can be interpreted as the Pearson coefficient [86].
To perform a consistent comparison between the drought indices categories, seven drought
categories equivalent to the corresponding values of SPEI3 were developed considering
the same cumulative probability of non-exceedance in each SPEI drought category for
the corresponding quantiles in the area-averaged time series of SWDISa, WSDI, and
GGDI during their common period (see Table 2). The scPDSI was classified following the
categories proposed by Well et al. [32]

Droughts exhibit non-stationary properties due to their association with different
large-scale oceanic-climatic drivers (e.g., ENSO) in the SFRB [11,87]. Therefore, in a third
step, we applied a wavelet squared coherence (WSC) analysis to reveal underlying os-
cillation patterns and changes in periodicities in a time-frequency domain between the
area-averaged values of SPEI against SWDISa, scPDSI, SSI, WSDI, and GGDI during their
common time periods. These time series were previously detrended using linear regression
to remove the effects of any underlying trend and seasonal components [85]. The WSC is
defined as the absolute value squared of a smoothed cross-wavelet spectrum, normalized
by the smoothed wavelet power (more details in Labat et al. [88]). The computational
procedure of the WCA described by Torrence and Compo [89] was used. The Monte
Carlo approach was used in the estimation of the level of statistical significance [90]. Both
metrics were calculated through the R package biwavelet (version 0.20.21) developed by
Gouhier et al. [91]. The rationale behind the use of the WSC is that it has been recognized
as a robust statistical approach to evaluate the coupling between different drought in-
dices where multiple underlying oscillations are present [13,88,92]. For the sake of clarity,
Figure 2 provides the overall picture of the methodology used in the study.
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3. Results
3.1. Spatial–Temporal Trends of SPEI3 and SPEI12

The SPEI12 at December (hereinafter SPEI12-December) uses as input the cumulative
precipitation from January to December for each year. Therefore, it is sensitive to inter-
annual variability of precipitation. Figure 3 shows the spatial–temporal trend of SPEI12-
December over the SFRB during the period 1980–2015. The values of SPEI12-December
with significant Theil–Sen’s slope shown in orange and red indicate the dominance of
drying trends at annual time scale, whereas ones shown in blue indicate the dominance of
wetting trends. Around 37% of the SFRB experienced a significant drying trend (p ≤ 0.05)
concentrated in the middle and south regions of the basin, while 17% showed a possible
drying trend (0.05 < p value ≤ 0.10). The more intensive drying trend with high statistical
significance (Theil–Sen’s slope < –0.06 and p ≤ 0.05) occurred on the upper part of the
Paramirim River sub-basin near the Serra do Espinhaço (roughly 7000 km2).
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Figure 3. Spatial–temporal trend of SPEI12 at December over the SFRB during 1980–2015. The
blue and orange–red tones represent areas with wetting and drying trends, respectively. The black
hatched lines show those regions with statistically significant Theil–Sen’s slope. The reference period
of 1980–2015 was chosen for the calculation of the SPEI.

Unlike the SPEI12, the SPEI3 takes into account the cumulative precipitation for three
consecutive months. For this reason, it serves as a reasonable proxy to evaluate the long-
term trend of seasonal droughts. Based on this premise, the SPEI3 was chosen in order to
characterize the seasonal trend of the climatic water balance (i.e., Precipitation - Potential
Evapotranspiration) over the SFRB. In terms of trends of SPEI3-February (DJF), -May
(MAM), -August (JJA), and -November (SON) for each year and during 1980–2015, a strong
drought exacerbation (significant at 95% confidence level) in the middle and southern
sub-basins during the June–July–August (JJA) and December–January–February (DJF)
seasons was observed (Figure 4a,c). Overall, 59% of the SFRB showed a significant drying
trend (p ≤ 0.05) during the JJA season, while for the DJF, SON, and MAM seasons it was
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16%, 14%, and 1%. For the SON and MAM seasons, although a predominant drying trend
was evident (Figure 4b,d), it was only significant over some regions of middle SFRB and
the major tributaries of the Três Marias reservoir in the Minas Gerais State (see Figure 1a).
DJF is the main rainfall season in the basin so its failure often triggers a shortage of water
in the NEB [10,18].
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These results indicate the occurrence of a long-term drying trend (p ≤ 0.05) over a
large portion of the SFRB throughout the 1980–2015 period, particularly in the JJA season.
To gain further insights on the drying trend, the temporal variation of the area under
drought conditions was analyzed.

3.2. Temporal Variations of the Area under Drought Condition Based on SPEI12 and SPEI3

The percentage of the area under drought conditions relative to the total area over
SFRB for each SPEI12 drought category (see Table 2) was used to investigate whether there
was an expansion of areas impacted by drought at an interannual scale during 1980–2015.
From Figure 5, one can see that all SPEI12-December drought categories have different
magnitudes of trend in terms of Theil–Sen’s slope, ranging from 0.001% to 0.015%. Those
categorized as moderate drought showed the greatest magnitude of slope. However,
neither of them was found to be significant (α = 0.05).
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Figure 5. Percentage of area under drought conditions according to the values of SPEI12 at December
in the SFRB during 1980–2015. The calculation of the area under drought conditions is based on the
number of pixels within the SPEI drought categories: moderate dry, severe dry, and extreme dry
shown in Table 2. The reference period of 1980–2015 was chosen for the calculation of the SPEI.

In order to have a more complete picture of the area under drought conditions in the
SFRB, the SPEI3 drought categories for each season were analyzed (Figure 6). All SPEI3
drought categories showed a positive Theil–Sen’s slope, which indicates the increasing of
the area under drought conditions. However, only those classified as moderate drought or
extreme drought exhibited a significant monotonic trend (Theil–Sen’s slope: 0.379% and
0.01% with α = 0.05 for moderate and extreme droughts) into the winter season (i.e., JJA)
since the 1980s.
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The winter months correspond to the dry season in the SFRB. Thus, these findings
indicate an intensification of drought conditions in the basin, with a dry season becoming
drier and geographically more extensive (see Figures 4c and 6c). The next section further
explores the incidence of extreme drought events which are characterized by an area under
drought conditions greater than 40% for at least five consecutive months.

3.3. Extreme Drought Events for the Period 1980–2015

Table 3 shows the main characteristics of the extreme drought events in the SFRB
during 1980−2015. As has already been mentioned, the severity is defined as the absolute
value of the sum of the values of the SPEI from the start to end of the dry spell. The most
severe event for each time scale occurred from May 2007 to January 2008 (SPEI3) and from
January 2014 to December 2015 (SPEI12). This last event was the worst extreme drought
event in terms of severity (44.63), duration (21 months), and spatial coverage (91.86%).
From Table 3, it can also be seen that the temporal distribution of the severity and duration
of the SPEI3-based extreme drought events is approximately bell-shaped, with a peak
during the occurrence of the E2 event. According to this result, there was no clear evidence
of trends in the observed severity and duration for this type of event. On the other hand,
the severity of the SPEI12-based events tended to increase between 1980 and 2015, which
is consistent with the long-term drying trend observed over a large part of the SFRB (see
Figure 3) and agrees with previous studies [11,29,45].

Table 3. Main features of the extreme drought events identified over the SFRB during 1980–2015.

Time Scale
[Months] Event Start

[Date]
End

[Date]
Duration
[Months]

Average
SPEI [-] 1

Dry Area
Peak [%] 2

Severity
[-]

SPEI3 E1 April-98 October-98 7 −1.69 90.58 11.82
E2 May-07 January-08 9 −1.73 80.09 15.61
E3 March-12 October-12 8 −1.78 94.67 14.27
E4 August-15 December-15 5 −1.75 95.99 8.76

SPEI12 E1 April-98 November-98 8 −1.76 90.69 14.06
E2 October-07 August-08 11 −1.73 87.16 19.00
E3 April-12 November-13 20 −1.83 92.93 36.55
E4 January-14 December-15 21 −1.86 91.86 44.63

For the extreme drought event shown: 1 it was calculated considering only values of SPEI ≤ −1.00; 2 it is the maximum value of the
percentage of pixels with values of SPEI ≤ −1.00. The values in bold correspond to the extreme value for each time scale and feature.

To explore the extreme drought events in terms of their temporal persistence, each
of them was isolated. Then, the temporal persistence was calculated for each pixel using
the procedure described in Section 2.3. Figure 7 shows the spatial distribution of the
temporal persistence over the SFRB during the incidence of the SPEI3 and SPEI12 extreme
drought events. For a given pixel, the value 100% means that the drought conditions
prevailed throughout the entire duration. When this particular situation was assessed for
each time scale, the results revealed that it occurred in a relatively constant proportion
of the SFRB during the incidence of the SPEI3 extreme drought events (from 30% to 34%
of the SFRB) compared to that caused by the SPEI12 extreme drought events (from 8% to
48% of the SFRB). Although the northern SFRB is located in the NEB, the areas with the
highest temporal persistence of drought conditions tended to be slightly more frequent
in the upper and middle parts of the basin. This outcome is in line with the findings
reported in recent studies that found higher incidence of dry spells over that region than at
the lower portion of the SFRB [11,29]. This fact has been mainly attributed to large-scale
oceanic-climatic drivers and their interactions [10], such as ENSO [12], the Madden Julian
Oscillation (MJO [14]), Pacific Decadal Oscillation (PDO [93]), and Atlantic Multidecadal
Oscillation (AMO [94]).
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Figure 7. Spatial distribution of the temporal persistence [%] during the incidence of the (a) SPEI3-
based extreme drought events and (b) SPEI12-based extreme drought events in the SFRB during
1980–2015. The main features of the extreme drought events are shown in Table 3. The temporal
persistence is the percentage of the total duration of the extreme drought event on a pixel level.

Naturally, meteorological drought has a strong association with the soil moisture,
streamflow, and groundwater variations. Therefore, different agricultural and hydrological
drought indices have been used to assess their impacts on these components of the basin-
scale hydrologic cycle [17,22,95]. The next two sections present a detailed examination of
the land–atmosphere coupling during the drought events in the SFRB.

3.4. Paired Intercomparison between the Drought Indices

Unlike in Sections 3.1 and 3.2, detrended full time series of all drought indices have
been used in this and the following section. The Spearman correlation coefficient (R) for
the SPEI3 against the SWDISa (R value: 0.665) and scPDSI (R value: 0.680), and for the
SPEI12 against the WSDI (R value: 0.772) and scPDSI (R value: 0.700) showed the highest
magnitudes (Table 4). Note that the SWDISa and scPDSI are more sensitive than other
drought indices to short-term changes in precipitation reflected by the SPEI3. This was an
expected result, since during the short-term droughts, the surface and root-zone SM are
largely controlled by evaporation losses [24].

Strikingly, the corresponding values of Spearman R for the SPEI12-WSDI (R value:
0.772) and SPEI12-scPDSI (R value: 0.700) were similar to those for SPEI3. Figures 1b and 8
help to explain this apparent inconsistency. The discharge of the São Francisco River at
Propriá and other sites located downstream is profoundly affected in terms of magnitude
and temporal regime by the operational management of the major reservoirs situated in
the upper and middle parts of the SFRB (e.g., Três Marias, Sobradinho, and Itaparica;
see Figure 1b). This situation, in turn, delays the propagation process of meteorological
drought to hydrological drought [20] (see Figure 8). This feature also explains the weak
correlation between the SPEI and SSI, particularly on a short-term time scale. Therefore,
these correlations should be considered as spurious correlations that lack a causal basis.
The reservoirs are filled during the rainy season and then during the dry season the stored
water volume is progressively drained to approximately half its capacity [45], masking the
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climate signal triggered by droughts. Regarding the weak correlation between SPEI and
GDDI, this can be attributed to the effect of aquifers in the SFRB. These results agree with
the well-known fact that these aquifers respond very slowly to drought conditions [96].

Table 4. Spearman rank correlation coefficients between the SPEI3 and SPEI12 and the SWDISa,
scPDSI, SSI, WSDI, and GGDI in the SFRB during their common time periods 1.

Type of
Drought

Drought
Index Site Common Time Period SPEI3

[-]
SPEI12

[-]

Agricultural SWDISa [-] - Jun 2010 to December 2015 0.665 * 0.388 *
scPDSI [-] - Jan 1981 to December 2015 0.680 * 0.700 *

Hydrological

SSI3 Propriá Mar/Dec 1980 to December 2015 0.028 0.362 *
SSI12 Propriá Dec 1980 to December 2015 −0.026 0.221 *
WSDI - Apr 2002 to December 2015 0.555 * 0.772 *
GGDI - May 2002 to December 2015 −0.036 −0.007

1 For each drought index, the Spearman correlation coefficient with the highest magnitude is reported in bold;
* statistical significance at 95% level based on an asymptotic t approximation.
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As expected, the SPEI12-based extreme drought events E2, E3, and E4 were concom-
itant with downward trends in the soil moisture (Figure 8b,c), streamflow (Figure 8e,f), 
and total water storage (Figure 8g). Furthermore, the GGDI showed a moderate negative 

Figure 8. Temporal variation of the area-averaged values over the entire SFRB of the (a) SPEI3 during
2000–2015, (b) SWDISa during 2010–2015, (c,d) scPDSI and SPEI12 during 2000–2015, (e,f) SSI3
and SSI12 at the streamflow gauge Propriá during 2000–2015, and (g,h) WSDI and GGDI during
2002–2015. The yellow shaded periods on the panels (a–h) indicate the occurrence of the SPEI12-
based extreme drought events E2, E3, and E4 shown in Table 3. Red shaded area corresponds to
drought conditions for each drought index (see Table 3).

As expected, the SPEI12-based extreme drought events E2, E3, and E4 were concomi-
tant with downward trends in the soil moisture (Figure 8b,c), streamflow (Figure 8e,f),
and total water storage (Figure 8g). Furthermore, the GGDI showed a moderate negative
correlation with the SWDISa (Spearman R: −0.491) during 2010–2015, suggesting that there
was an increase in groundwater abstractions which is in line with the expansion of irrigated
agriculture in the basin [50]. A more detailed comparison of Figure 8b,h reveals that the
GGDI and SWDISa had different degrees of temporal coherence in the time domain. How-
ever, this was most evident during the E4 event which was the worst long-term drought
in terms of severity (see Table 3). A better understanding of coupling between different
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abovementioned drought indices can help to explain land–atmosphere interactions during
the drought episodes in the SFRB. This has been the main motivation for using a wavelet
squared coherence (WSC) analysis in next section.

3.5. Coupling between the Drought Indices

Figure 9 displays the squared wavelet coherence together with their phases for SPEI3
and SPEI12 paired with those drought indices that showed the highest values of Spearman
rank correlation coefficients in Table 4. The blue color indicates low wavelet coherence
(near zero), whereas the red color shows areas of high wavelet coherence (near one).
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Figure 9. The squared wavelet coherence between the area-averaged values over the entire SFRB of the (a) SPEI3 against
SWDISa during 2010–2015, (b) SPEI3 against scPDSI during 1981–2015, (c) SPEI12 against SSI3 during 1980–2015, (d) SPEI12
against SS12 during 1980–2015, (e) SPEI12 against WSDI during 2002–2015, and (f) SPEI3 against GGDI during 2002–2015.
Thick contours enclose the areas with correlations statistically significant at 95% confidence level against red noise. Semi-
transparent areas indicate the ‘cone of influence’ where the edge effects become important; therefore, they were not
analyzed. The relative phase relationship is shown as arrows (with in-phase pointing right, anti-phase pointing left, SPEI3
or SPEI12 leading paired variable by 90◦ pointing straight down, and paired variable leading SPEI3 or SPEI12 by 90 pointing
straight up).
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The wavelet coherence between the SPEI3 and SWDISa revealed areas with the highest
common power at recurrence intervals of 8–12 months from 2010 to 2015 (significant
at 95% level). In this region, the signals of SPEI3 and SWDISa tended to be in phase
(Figure 9a), indicating that there was a synchronous coupling at an interannual time scale.
It should, however, be noted that the SPEI6/SPEI12-based E3 extreme drought events
(see Table 3; from March 2012 to October 2012, and from April 2012 to November 2013,
respectively), coincided with a strong relationship between both signals with recurrence
times of 1–3 months. This means that, due to lack of precipitation and high temperature,
the SSM in the SFRB was drastically affected in a very short period. Similarly, the scPDSI
showed a synchronous and persistent coupling with the SPEI3 during the entire study
period 1981–2015 (Figure 9b).

The SPEI12-SSI3 and SPEI12-SSI12 exhibited an asynchronous coupling in intensity
and direction of the correlation during 1980–2015 (Figure 8c,d and Figure 9c,d). The SSI3
and SSI12 signals tended to lead the SPEI12 signal at recurrence intervals of 4–12 months
(significant at 95% level). Obviously, the presence of a large number of reservoirs in the
SFRB favored a better correspondence between these signals during the presence of extreme
drought events and recurrence intervals greater than one year, which is congruent with the
results in Figure 8.

Regarding the SPEI12-WSDI, they tended to show a strong coupling (significant at
95% level) in both short-term (i.e., 8–12 months) and long-term (i.e., ≥12 months) drought
conditions (Figures 8e and 9e), which was also reflected by the highest linear association
shown in Table 4. This result highlights the effect of drought on water resources in the SFRB.

The SPEI3-GGDI revealed clear evidence of non-linearity between them (Figures 8e and 9f).
The areas with the highest common power were mainly concentrated at recurrence intervals
less than a year. The GGDI signal tended to lead the SPEI3 signal, which is concurrent with
the seasonal use of water for irrigation in the SFRB [49]. Nevertheless, it is important to
mention that the signals of SPEI3 and GGDI tended to be in anti-phase from 2012 to 2015,
implying that the drought conditions at interannual time scale increased groundwater
abstraction, which, in turn, reduced groundwater storage.

Overall, these results indicate that the SWDISa and scPDSI capture reasonably well the
short-term drought conditions. The WSDI represent adequately the hydrological droughts
in terms of total water resources, while the GGDI has an acceptable performance in cap-
turing the groundwater abstractions. In relation to the SSI3 and SSI12 at the streamflow
gauge Propriá, due to the large number of reservoirs in the SFRB, they should not be used
for decision making.

Among the drought indices evaluated, the scPDSI and WSDI have the advantage
of providing updated information until 2020 (see Table 1) and both show the highest
correlation with SPEI3 and SPEI12 in both frequency and time domains (Figure 9b,e),
respectively. Thus, they were used in order to explore the more recent evolution of the
agricultural and hydrological droughts in the SFRB. The more relevant results are presented
in the following section.

3.6. Recent Variations in Agriculture and Hydrological Drougths Based on scPDSI and WSDI

For this analysis, the water level of the Sobradinho reservoir and the discharge at the
Boqueirão streamflow gauge (see Figure 1) were used as benchmark time series to infer
the drought conditions in the upper and middle parts of the basin. Unlike the Propriá
streamflow gauge, the tributary sub-basins to Boqueirão (about 69,995 km2) do not have
relevant hydraulic and diversion structures, so the SSI12 time series can provide reliable
information on hydrological drought conditions over this region of the basin. On the other
hand, Sobradinho is the largest reservoir of the SFRB and is located in the lower part of the
basin; hence, its depletion in terms of water level is a reasonable proxy of long-term drought
impact in the upper and middle parts of the SFRB. Figure 10 summarizes the temporal
variation of these variables. As noted by Sun et al. [11], and congruent with previous results,
this basin experienced an overall soil moisture and water resources depletion situation
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since the beginning of 2012, coinciding with the occurrence of the SPEI12-based E3 and E4
extreme drought events.
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Figure 10. Temporal variation of the area-averaged values over the entire SFRB of the (a) scPDSI during 1981–2020
and (c) WSDI during 2002–2020. Temporal variation of values of (b) SSI12 at the Boqueirão streamflow gauge during
1981–2020 and (d) standardized anomalies for the water level at the Sobradinho reservoir during 1999–2020 (reference
period: 1999–2020). The yellow shaded periods on the panels (a–d) indicate the occurrence of the SPEI12-based extreme
drought events E1, E2, E3, and E4 shown in Table 3. Red shaded area corresponds to drought conditions for each drought
index (see Table 3), while this corresponds to negative anomalies for the water level at the Sobradinho reservoir. The water
level at the Sobradinho reservoir provided by the National Electric System Operator (https://bit.ly/3hhz3p3; accessed on
8 May 2021).

An aspect relevant in Figure 10b is the presence of a moderate tendency towards
drier-than-normal conditions over the Grande River basin, which drains into the Sao
Francisco River near Boqueirão. This confirms the predominance of drought conditions
in the western middle part of the SFRB shown in Figures 3 and 4, persisting beyond the
end of the 2020. Another key aspect observed in Figure 10 was an evident bounce-back
effect in the scPDSI time series (January 2018), which may be attributed to the irrigation
expansion policy throughout the SFRB [50]. Interestingly, the water level at the Sobradinho
reservoir since 2019 showed a partial recovery from the 2012 and 2015 extreme drought
events (Figure 10d) concurrent with the basin-scale WSDI (Spearman R: 0.760). This might
be interpreted as an incipient signal of generalized recovery in the SFRB. However, this
needs further investigation as it goes beyond the goal of this study.

4. Discussion

In this study, the concomitant impacts between the different types of droughts were
analyzed in order to obtain a better understanding of their main features in the SFRB.
The results revealed that a moderate basin-wide drying trend affected large parts of the
middle and south regions of the SFRB from 1980 to 2015 (see Figure 3), where its main

https://bit.ly/3hhz3p3
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tributaries and reservoirs are located (see Figure 1a). The basin-scale drying was previously
evidenced by Sun et al. [11], who identified an overall water depletion concomitant with
a prolonged rainfall reduction, which in turn coincided with high SST anomalies over
the Tropical North Atlantic (TNA) and strong El Niño episodes [10,12,97]. Although the
degree of drying varied spatially, the severity of the drought increased during the JJA
season and, to a lesser degree, in DJF and SON, respectively (see Figure 4). According to
the assessment carried out by the Intergovernmental Panel for Climate Change (IPCC) in
its Sixth Assessment Report, these variations are ascribed to the effects of climate change
in this region of Brazil [98]. This carries significant implications for the agriculture and
hydropower sectors [45,50] due to their high dependence on seasonal rainfall [8].

Regarding the performance of satellite-based drought indices in the characterization
of droughts, the results revealed that the SWDISa and WSDI have the greatest potential
for assessing and monitoring agricultural and hydrological droughts across the basin (see
Figure 8). For the SWDISa case, this strength is due to the SMOS capacity to detect small
variations in soil moisture at the top soil [7,97], whereas that the good performance of
WSDI may be attributed to the capacity of the GRACE satellites to integrate terrestrial
water storage vertically [42]. These satellite-based drought indices are periodically updated
and upgraded as the GRACE and SMOS record lengths grow. This implies that they can
provide complementary information on regional drought conditions which is useful to
decision and policy makers in the SFRB.

Both satellite-based and ground-based drought indices used in this study revealed
that there was no clear evidence of a trend in the short-term extreme drought events in
terms of their spatial coverage, severity, or duration during 1980–2015. In contrast, the
long-term extreme drought events tended to be spatially more extensive and temporally
persistent (see Table 3 and Figure 7), which is consistent with the conclusions of previous
studies [10,11]. Nevertheless, this finding is not necessarily indicative of an irreversible
transition to drier-than-normal conditions in the basin. The concurrence of different climate
modes of natural variability may explain part of the intensification of drought conditions
in recent decades, as suggested by Kayano et al. [97]. They may act in synergy blocking the
moisture transport from different oceanic regions to the basin, triggering strong drought
conditions [99,100]. This statement is confirmed by several studies that found that the
extreme drought events during the austral rainy season have been consistent with near sur-
face atmospheric circulation changes and a reduced moisture flow coming from the tropical
Atlantic region [10,12,18]. However, as a consequence of climate change, this synergistic
effect is becoming more frequent after the 2000s (see Figure 10), leading to unprecedented
drought events in the SFRB [4,101]. In this context, it is important to mention that the social,
economic, and environmental impacts of drought are aggravated by anthropogenic factors
such as the expansion of the irrigated agriculture and the building of small dams and other
hydraulic infrastructures for human consumption and irrigation, which in turn pushes
water demand [50]. In spite of this pessimistic situation, the agricultural expansion might
be limited by the recurrent droughts (see Figure 8) in the short term. This is particularly
relevant for crops with high water use demand such as rice and sugarcane.

The southern half of the SFRB already experiences high socioeconomic vulnerability
and precarious conditions to face the impacts resulting from extreme droughts [8]. Never-
theless, the intensification on drought occurrence over the upper and middle regions of the
SFRB (see Figures 5 and 6) is of particular concern because the agricultural production is
heavily based on rainfed crops in most of their municipalities [50]. On the other hand, the
hydropower sector is not excluded from this reality. The hydropower generation in this
region has shown a low resilience and adaptive capacity to strong drought conditions that
continued until 2020 (see Figure 10d), resulting in blackouts, water supply restrictions, and
energy shortages [102].

Another key aspect observed in our results was a marked depletion of groundwater
levels (see Figure 8h) during the severe drought conditions, which was inversely pro-
portional to the surface soil moisture content (see Figure 8b), implying an increase in
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groundwater abstraction for irrigation. This is not a good sign for the SFRB. An over-
abstraction of groundwater stock during the occurrence of the prolonged extreme droughts
can lead to irreversible depletion, particularly in the shallow aquifers [103].

The reduction of water availability due to recurrent drought events together with the
expansion of irrigated agriculture and the increasing demand for hydraulic energy could
increase the number of water use conflicts in the SFRB. Furthermore, an increased risk
of food insecurity, environmental degradation among other potential impacts related to
extreme drought episodes, would be expected in future. Last, but not least, this scenario
leaves doubts about the long-term sustainability of the São Francisco River Integration
Project conducted by the Brazilian federal government. However, according to the most
recent data from the SWDISa and WSDI, prolonged drought conditions appear to be
reversing (Figure 10a,c). In any case, the design and implementation of effective adaptation
strategies will be necessary in the face of future droughts in the SFRB.

5. Conclusions

Several satellite-based and ground-based drought indices were used to better un-
derstand how climate variability is affecting the spatiotemporal distribution of extreme
droughts in the SFRB. The newest version of the GRACE-based terrestrial water storage
anomalies and SMOS-based soil moisture together with the scPDSI were used as satellite-
based drought indices during different periods between 1981 and 2020. The SPEI and SSI
at different time scales were used as ground-based drought indices and as benchmark data
against which to assess the performance of the satellite-based drought indices in capturing
drought conditions. This set of drought indices provided a comprehensive picture of
drought risk in the basin. The following conclusions can be drawn from this study.

• A moderate basin-wide drying trend at annual time scale affected the middle and
south regions of the SFRB from 1980 to 2015, coinciding with the ENSO phenomenon
and SST anomalies in the tropical Atlantic, as already mentioned in previous studies.

• An expansion of the area under drought conditions was observed during the winter
months (i.e., JJA), but there was no evidence of a significant positive trend in the
remaining seasons in terms of spatial coverage between 1980 and 2015.

• The long-term extreme drought events showed increasing trends in terms of severity
and duration, but this characteristic was not observed on a seasonal time scale during
1980–2015.

• The SWDISa and WSDI showed a good performance in assessing agricultural and
hydrological droughts across the whole SFRB.

• A marked depletion of groundwater levels concurrent with increase in soil moisture
content was observed during the most severe drought conditions, which means an
intensification of the groundwater abstraction for irrigation.

• According to the most recent data from the SWDISa and WSDI, prolonged drought
conditions appear to be reversing.

Overall, this paper has shown that drought conditions were worsening over the
SFRB in terms of spatial coverage, duration, and severity during 1980–2015, which was
particularly evident on longer time scales. Although it is too early to indicate a general
decline in basin-scale drought conditions, the time series of water level at the Sobradinho
reservoir shows incipient signs of a reversion of drought conditions since the end of
2019 (see Figure 10d). Consequently, this aspect will be explored as further information
becomes available to improve our knowledge about how climate variability is affecting the
distribution of extreme droughts in the SFRB.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13193921/s1, Figure S1: Spatial–temporal distribution of the p-value of the ADF test used
to assess the stationarity assumption in the GRACE/GRACE-FO-based averaged terrestrial water
storage anomalies (TWSA), and Table S1: Summary of the Augmented Dickey–Fuller (ADF) test used
to assess the stationarity assumption in all daily streamflow time series from 01/1980 to 03/2020.
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